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Ten widely available sets of routines, including HQRII ,  QCPE GIVENS and 
EISPACK 3, were evaluated for reliability, robustness, accuracy, speed, com- 
pactness, portability and simplicity. All were found lacking in one or more 
areas. Modified versions of the EISPACK routines TRED3, TQLRAT, TIN- 
VIT and TRBAK3 performed somewhat better. Changes to TINVIT were 
especially important for improved speed, accuracy and reliability. To achieve 
the maximum capabilities of the FPS-X64 series of computers access to table 
memory is required, but since the FORTRAN compiler does not allow this 
and there is no library support for the required operations, it was necessary 
to write three routines in APAL. The standard algorithm needs to be modified 
before full efficiency can be achieved for the back transformation. 
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I. Introduction 

The need to determine wavefunctions and their associated frequencies (vibrations, 
energies) is pervasive throughout computational chemistry and physics. The 
solution of this problem is the solution of the eigenvalue problem. Given a real 
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symmetric matrix A of  dimension n, a matrix X containing m orthogonal column 
vectors of length n and a diagonal matrix D whose diagonal element d~ is the 
eigenvalue of Xi, the matrix representation of  the problem, A X  = XD, appears 
in many guises, not the least of which is the time-independent Schr6dinger 
equation: H ~  = E ~ .  

In ab initio quantum chemistry programs, the eigenvalue problem appears in the 
solution of both self-consistent field (SCF) and configuration interaction (CI) 
wavefunctions, although in quite different forms. In the SCF problem, eigenvec- 
tors for all occupied orbitals must be found, although all vectors, including 
unoccupied ones, are usually found. The extraction of the vectors in an ab initio 
SCF calculation is not the time-limiting step so the efficiency of the method is 
not as important as reliability and accuracy. Matrices in SCF problems are 
memory resident and may range in size from 101 to 103. CI calculations, on the 
other hand, typically involve large matrices that are not memory resident (in fact 
the matrix itself never exists as such in direct CI methods), only a few vectors 
are needed, typically less than 10, and the vector solution is the time-limiting 
step. The largest dimension feasible with current computers is on the order of 10 7. 

As may be deduced from the disparity between SCF and CI environments, there 
is a considerable difference in the methods used to solve these two eigenvalue 
problems, even though they both deal with real symmetric matrices. The fact that 
the large matrices are usually sparse need not complicate the comparison. The 
basic properties of  the methods are independent of whether the matrix is dense 
or not. The conventional distinction has been between methods dealing with 
small (memory resident) and large (non-memory resident) matrices. Small matrix 
methods usually involve an initial transformation, which becomes impractical if 
the matrix is not memory resident, before the actual solution is begun. Large 
matrix methods avoid this step. Given the amount of memory available on current 
systems however, where one million words (8 MB) may be considered small and 
the Cray 2 has 256 million words (2048 MB) of  memory, this distinction is less 
appropriate. Indeed, large matrix schemes like the Davidson [1] method can 
generally find a single eigenvector for a small matrix faster than the standard 
small matrix methods. 

A more appropriate division among methods is not the size of the matrix but the 
fraction of  the eigenvectors computed. The crossover point between large and 
small matrix methods may be found by comparing the number of multiply and 
add operations (MAO's), to highest order, for a dense matrix. Large matrix 
methods require CtKmn 2 MAO's to obtain m vectors of length n. Here C1 is a 
proportionality constant and 

Km = ~ g j  = m A  t 
j=l 

with Kj the number of iterations required to obtain vector j and/~1 the average 
number of iterations per vector. Small matrix methods require Cln3+ C2n2m+ 
C3Rsn2m MAO's. C1, (22 and Ca are again proportionality constants and/~s is 
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analogous to /(l. When the eigenvectors are found using a QR (or a related 
method such as QL) the product  C3g~s is typically in the range of four to twelve, 
but since the most efficient algorithms, i.e., those using the inverse iteration 
technique, have C3 essentially zero, the following analysis does not involve Ca. 
Equating the MAO's for the large and small matrix method and solving for rn gives 

C 1 rt 

m = c t g l  _ C2 n g . 

Reasonable values of the constants are one for Cg and C2 and two-thirds for C1, 
so when/(1 is eight the small matrix methods are more efficient if at least 10% 
of the vectors must be computed. If the vectors could be found with an average 
of  four iterations each, a possibility with a quadratically convergent method or 
a very good initial guess, the breakeven point goes up to about 20%. Such a high 
breakeven point is probably unrealistic for another reason. Many of the large 
matrix methods, Davidson [1] and Lanczos [2] in particular, need to find all of 
the eigenvectors in an expansion basis subspace that start with a dimension equal 
to the number of basis vectors sought. Convergence is enhanced by adding that 
number of  basis vectors to the sub-space on each iteration. In a hypothetical case 
seeking 20% of  the vectors, by the fourth iteration all the vectors of  a matrix of 
dimension 0.8n must be found. It thus appears that when about 10% or more 
of the eigenvectors are required, a small matrix method should be used. Less 
than 10% of the dimension of the matrix is considered to be a few eigenvectors. 

Although ab  ini t io  SCF methods may soon need to diagonalize Fock matrices of 
order 103, the construction of the matrix is an n 4 time step, whereas its solution 
is only n 3. Sufficient parallel computation may be able to reduce the construction 
phase to n 3, so efficient diagonalization methods may become important. Of more 
serious concern are semi-empirical SCF methods whose construction phase is 
already of  order n 3. Calculations on biologically active molecules using 103 basis 
functions will soon be common. Purely empirical methods, such as the various 
Hiickel approaches, require only n 2 time in the matrix construct phase. First 
principle local density function calculations by solid state physicists routinely 
find ten percent of the vectors of matrices of order 1000 to 2000. These calculations 
spend fully ~ of their time finding eigenvectors in an algorithm that iterates to 
self-consistency. Since the matrix needs to be memory resident, the availability 
of  memory has been a constraint in the past. Larger memories are putting an 
even heavier demand on the eigenvector routines. Problems of this nature involv- 
ing 20 000 basis functions should be possible on the Cray 2, allowing the first 
realistic calculations of impurities in metal clusters�9 Solving large eigenvector 
problems are also common in computing both vibrational and photoionization 
spectra. Quantum molecular dynamics is another area requiring efficient 
diagonalization routines. In his studies of  HF-HF,  Truhlar [3] has diagonalized 
300 matrices of  dimension 948. Obviously there is a clear need for an efficient 
method to find more than a few, i.e., from ten percent to all, of  the eigenvectors 
of a dense real symmetric matrix with dimensions of order 103 o r  104. 
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2. Basic theory 

The methods discussed here can be broken into four parts: (1) reduction to 
tridiagonal from; (2) evaluation of the eigenvalues; (3) evaluation of the eigenvec- 
tors in tridiagonal form and (4) transformation of the vectors back to the original 
matrix form. The operations are not necessarily carried out in this order. Methods 
that do not follow this pattern, for example Jacobi [4], are not competitive in 
solving an arbitrary symmetric matrix. 

Householder 's method [5] is the most efficient way to form the tridiagonal matrix. 
A similarity transformation 

Ai+l = PiAiPi, i = 1, 2 , . . . ,  n - 2  

is constructed from a set of reflectors, 

P i = I - u i u f / H i ,  Hi=uirui /2  

each one of  which zeros out all elements of a row and column with the exception 
of the diagonal and codiagonal elements. This is usually implemented as a rank 
2 update that first computes 

Pi = A i u i ,  (1/3n 3MAO's) 

and then 

Ai+l = A i -  u~qT- q~uT, (1/3n3MAO's), 

where 

Ki = ufpi/2H~ q, =pi /Hi  -K,u~, (O(n2)MAO's). 

The total operation count is thus 2/3n 3 MAO's, which is half the number of 
operations required using the Givens' plane rotation approach [6]. 

A wide number of methods have been used to compute the eigenvalues of the 
tridiagonal matrix. The most efficient are variations on the QR or QL methods. 
This step requires only order n 2 operations, but the complexity of the algorithms 
may preclude vectorization. This, and the fact that the eigenvalues are computed 
by an iterative method, may make the proportionality constant quite high (Parlett 
[7] uses a value of nine). 

There are two common ways to get the eigenvectors of the tridiagonal matrix. 
The first and most reliable is to accumulate the plane rotations generated by the 
QR/QL process. This method is of order n 3, but is appropriate only if all the 
eigenvectors must be found. The second method is inverse iteration and is 
generally of order n 2. Since it finds the eigenvector of a given eigenvalue, the 
specification of whether to compute a few or all of  the vectors is easily controlled. 
Much has been written about the stability of inverse iteration [7] and it is generally 
considered a safe technique. Inverse iteration usually converges in one or two 
cycles, but it does occasionally fail to converge. For this reason it may be necessary 
to provide a QR/QL routine as a backup if computing all the eigenvectors is 
appropriate. 
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The final step is to recover the eigenvectors of the original matrix. This may be 
accomplished by accumulating the reflectors 

n - - 2  

z =  11 ( I -u ,uT /Hi ) .  Zo 
i = l  

either onto a unit matrix, as in the QR/QL variant using 2/3n 3 MAO's, or onto 
the tridiagonal vectors usirag In 3 MAO's. 

Using inverse iteration, a total of approximately 5/3n 3 MAO's is required. In 
contrast, when a Q R / Q L  method is used to find the vectors, at least 10/3n 3 
MAO's will be required, and frequently two or three times that number. 

3. Evaluation procedure 

Since some numerical analysts consider the understanding of the basic theory 
"essentially complete" [7], the choice is really which is the best implementation. 
As anyone knows who has had one of the standard routines fail, this is not a 
trivial task. To guide the choice, a list of attributes that can be measured with 
some objectivity is required. These attributes include speed, compactness, 
accuracy, reliability, robustness, portability and simplicity. 

Speed is an obvious and important attribute and one that is easy to measure. The 
simplest approach is to make direct measurements of the time required to carry 
out the various sections of the calculation. Reasonable estimates may also be 
made based on the formal complexity of the algorithm, the time required to carry 
out individual operations and, where appropriate, the number of  iterations 
involved. Here, direct measurements were made for each of the four steps. Even 
when one process was embedded in another, the appropriate sections were timed 
independently. 

Compactness is a measure of the memory required to carry out a task. Methods 
that store the matrix in packed or symmetric storage mode where A(1)= A l l  , 

A(2) = A~2, A(3) = A22, A(4) = A 1 3 , . . .  , which require only n(n + 1)/2 words for 
the input matrix, are usually preferable unless the output vectors can overwrite 
the input matrix. No local storage should ever be necessary; array storage should 
be provided by the calling routine. 

Accuracy means producing the correct results with sufficient precision. Some of 
the methods tested require the calling routine to specify a level of accuracy by 
giving a threshold value for convergence. Most of the time the algorithms used 
by the tested routines were capable of producing results with near full machine 
precision with no significant increase in time. For this reason it is preferable to 
have a routine that handles accuracy automatically and thus avoids a possible 
source of error by specifying an inadequate amount of precision in the calling 
routine. Measuring accuracy is not difficult but it is time consuming. Sometimes 
accuracy is measured by comparing the results with those produced by the same 
routine (or a more reliable one) in extended precision. This approach is not 
generally useful, as some machines do not support precision beyond the working 
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precision (generally a 64 bit word) and it may be very slow and expensive to use 
on machines that do support  it. Such absolute error methods also make it difficult 
to compare the same routine on different machines. Accuracy is measured here 
by computing the normalized relative residual [8] 

IIAX, - A,X, II 
p = max 

l_<,_~n 1 0 .  n . ~ .  Ilall" IrX, ll" 

The norms are 1-norms and e is defined as the smallest value that may be added 
to one such that the result is different from one. The value of ten in the expression 
for p was chosen empirically so the following statements would hold: (1) a value 
less than one indicates satisfactory performance;  (2) a value greater than 100 
indicates poor  performance and (3) a value between one and 100 indicates a 
progressively marginal performance.  

Reliability refers to the probabili ty of  failure and as such is difficult to measure. 
The method should produce accurate results most of  the time and signal when / 
it cannot. Producing no result is much better than producing erroneous results. 
For this reason the routines were tested with pathological matrices to see how 
well they handled themselves in difficult situations. Failure to produce results 
should not be considered a deficiency in a high performance routine if the failures 
are infrequent and the failure is communicated to the driving routine, which can 
then call a slower, more reliable, routine. 

Robustness is closely related to reliability. A robust routine fails gracefully and 
without surprises. A robust routine does not work well with one matrix and fail 
completely on a similar one. It takes more time or produces less accurate results 
in a predictable manner  as the problem becomes more difficult. Robust  routines 
do not abort  in the middle of  a calculation because of arithmetic exceptions. 

To measure the reliability and robustness of  the routines, several test matrices 
were used. Each of the matrices was defined in a manner  that allows it to be 
generated for any given dimension. All the eigenvectors for each matrix were 
calculated using the following 22 dimensions: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 
25, 30, 35, 40, 45, 50, 75, 100, 125 and 500. Note that an equal number  of  even 
and odd dimensions were tested. The first few values check special cases, while 
the final value was used for speed comparisons. Most of  the matrices were chosen 
to present a variety of  difficult situations so that a qualitative assessment of  
reliability and robustness could be made. Matrices representing real problems 
were also included to assess performance in a more normal environment. The 
following test matrices [9] were used: 

1) NULL.  This matrix is all zeroes. A good routine will set the eigenvalues to 
zero and return a unit matrix while doing very little work. A mediocre routine 
will return an error code. A bad routine will abort when it attempts to divide by 
zero. 

2) D I A G D N .  This is a diagonal matrix with descending values along the diagonal, 
i.e., Aii= n - i + 1. 
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3) WlLKWP.  The Wilkinson W § matrix is a tridiagonal matrix whose diagonal 
elements are defined as Aii= [ n / 2] + 1 - min (i, n - i + 1) where [ b ] is the largest 
integer less than or equal to b. The codiagonal elements all have a value of one. 

�9 The separation of the two largest eigenvalues is n !-2. A good method will spot 
this as a tridiagonal matrix. 

4) WILKWM. The Wilkinson W -  matrix has the same form as the W § matrix 
except Ai~ = In /2 ]  + 1 - i. For odd order, this matrix has pairs of  eigenvalues that 
are equal in magnitude but opposite in sign. The magnitudes are close to some 
of  those of  the corresponding W § matrix. 

5) ONES. This matrix, consisting entirely of  ones, is of  rank 1 (only one non-zero 
eigenvalue) and singular. Its solution in exact arithmetic is trivial, but rounding 
errors on some machines can result in disaster. 

6) BORDER.  This highly degenerate matrix (n - 2  eigenvalues equal one) is zero 
everywhere except on the diagonal, where Aii = 1, and in the last row and column, 
where Ain = Ani = 2 1 - I .  

7) FRANK.  This matrix, with A 0 = min ( i , j ) ,  is reasonably well behaved. 

8) MOLER.  This matrix has diagonal elements A~ = i and off-diagonal elements 
A o = min ( i , j ) - 2 .  It too is reasonably well behaved, although it has one small 
eigenvalue. 

9) NESBET. All off-diagonal elements of  this matrix are cne and the diagonal 
elements are split into two ranges. For i -< 5, A~ -= 1 +0.1 (i - 1). For i > 5, A,  = 2i - 
1. This matrix has been frequently used in testing large matrix methods. 

10) HRING2.  This matrix is the Hiickel representation for two independent rings 
where one ring has even indices and the other odd indices. The matrix elements 
are zero except A~,i-2 = A~_2,~ = - 1 ,  Al ,n_  1 = An_l ,  1 --- - 1  and A2,. = A.,2 = -1 .  The 
resulting eigenvectors preserve this structure, i.e., except for the two lowest 
eigenvectors, every other element of the vector is zero. Methods that do not 
provide adequate orthogonality fail to do this. 

11) D I N D O N .  The ding dong matrix is defined as A 0 = 0.5/(n - i - j  + 1.5). This 
matrix is always represented inexactly and has clusters of  eigenvalues near + ~-/2. 

12) HILSEG.  The Hilbert segment of  order n is defined as A~j = 1 / ( i + j -  1). 
This matrix is notorious for its logarithmically distributed eigenvalues. Although 
positive definite, it is so ill-conditioned that Nash [9] claims most eigenvalue 
algorithms will fail for some value of n < 20. 

Portability means a routine requires no changes other than those related to 
precision when changing machines. Portable routines to evaluate machine depen- 
dent constants are readily available. To check portability, each routine was run 
on a DEC VAX-11/780 and an NAS 9160 in addition to the FPS-164. The 9160 
is an IBM compatible machine with a vector processing facility. A few selected 
routines were also run on a Cray X-MP/24 and on its compatible the SCS-40/14. 
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Finally there is simplicity. Simplicity means that a routine is easy to use and easy 
to modify. A routine is easy to use when it has a well-documented set of  calling 
parameters, no local storage and no COMMO N  blocks. Since modifications at 
some point are inevitable, be they for tuning purposes or because a better 
algorithm has been found, routines must be modular. Modularity helps clarify 
the structure of  the algorithm and insure that changes to one section do not affect 
others. Small, modular routines are much easier to tune and thus encourage more 
efficient utilization of  resources. 

4. Routines evaluated and results 

Although it has not received the intensive development effort of LINPACK [10], 
EISPACK [8] is the standard for comparison when dealing with routines to solve 
eigenvalue equations. EISPACK was originally a collection of FORTRAN 
routines that were direct translations of Algol procedures developed in the 1960's 
by nineteen different authors [11]. One of  the side effects of the translation was 
decreased performance due to inefficient memory access resulting from the 
different way arrays are stored in Algol (by row) and FORTRAN (by column). 
The latest edition, version 3, has resolved this problem, at least as far as symmetric 
matrices are concerned. Other improvements in version 3 include improved 
portability and a new driver, RSM, that uses inverse iteration. In earlier editions 
users needed to supply their own drivers to use the inverse iteration routines in 
EISPACK. Unfortunately, RSM does not use the more memory efficient packed 
form of the input matrix. The RS routine does not use packed form either but, 
because it uses a QL method to obtain vectors, it can accumulate the vectors on 
top of the input matrix. RSM can't do this because the reflectors need to be 
preserved until after the tridiagonal vectors are generated, resulting in twice the 
storage requirements of  RS. The only driver to handle the input matrix in packed 
form is RSP, which also uses a QL method for the vectors but does not do the 
back transformation until after the tridiagonal vectors have been found. This 
makes it slower and less compact than RS. Since all the vectors must be found 
when using the QL approach, RSM is the only driver offering the choice of 
finding the m lowest vectors. Several improvements to this situation are immedi- 
ately obvious. One would be to modify RSP to be as efficient as RS. Another 
would be to allow RSP access to the inverse iteration routines as RSM does. This 
latter change is very easy to do and is called RSPII here. RSPII has the same 
performance characteristics as RSM but uses less memory; in fact, if less than 
half the vectors are needed, RSPII uses less memory than RS. 

The only routine to produce satisfactory results for all matrices on all three 
machines was RS (calling TRED2 and TQL2). From this standpoint it is reliable 
and accurate. Since there were no failures, graceful or otherwise, it appears to 
be reasonably robust, although the times produced by TRED2 for the ONES 
matrix, shown in Table 1, do not scale correctly, indicating room for improvement. 
This problem was caused by an inconsistent ability to finish the tridiagonalization 
after the first similarity transformation, a problem TRED3 also suffers from. Since 
it accumulates vectors from QL rotations, it is not one of the faster routines. RS 
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Table 1. Milliseconds to tridiagonalize ONES matrix for FPS-164 

n TRED2 a TRED3 ETRED3 

10 0.65 0.51 0.56 
15 1.61 1.34 1.43 
20 4.73 3.41 2.11 
25 6.26 5.82 2.94 
30 9.62 13.17 3.80 
35 7.84 7.06 5.01 
40 19.40 19.42 6.24 
45 33.66 32.13 7.59 
50 50.81 50.78 9.14 
75 79.01 84.46 18.80 

100 95.21 100.76 31.90 
125 366.08 416.37 48.49 

a Tridiagonalization time only; reflector accumulation not included 

is very compact, requiring only n2+2n words of memory and very portable. 
Improvements to the clarity and structure would improve its simplicity. In 
particular, TRED2 could be made more modular by splitting it into separate 
routines to generate and accumulate the transformations. The version of RS 
supplied by FPS in their subroutine library did not do as well as the EISPACK 
RS. The FPS version indicated a failure to converge the first eigenvalue for any 
NULL matrix, for ONES with n = 5 ,  7, 9, 15 and HRING2 with n = 4 .  The 
APMATH64 Manual [12] indicates that IMTQL2 is used instead of TQL2. 

As expected, RSP (calling TRED3, TQL2 and TRBAK3) generally p r o d u c e d  
results comparable to, but slower than, RS; requiring 6% more time on FPS, 
10% on VAX and 21% on NAS. RSP is not as robust as RS, however, with 
TRED3 generating two overflow conditions on the NAS machine (ONES, n = 25, 
35) and one on the VAX (BORDER, n = 40). The FPS is normally run with 
arithmetic exceptions disabled because the compiler will sometimes process 
undefined values at the higher optimization levels. The results indicated satisfac- 
tory operation for FPS. As previously noted, RSP is not a compact routine, 
requiring (3n2+7n)/2 words of memory. 

RSPII (calling TRED3, IMTQLV, TINVIT and TRBAK3) encountered the same 
overflows as RSP. In addition, TINVIT failed to converge for several cases. When 
it did converge, the values of the residual were generally larger than with RS or 
RSP. Values of p up to 6.2 were observed and the trend was towards larger values 
with larger matrices. RSPII thus had problems with reliability, robustness and 
accuracy. For n = 500 it required only 26% of the time needed by RS on the 
FPS, 35% on the VAX and 50% on the NAS. It requires n2/2+ rim+21~2 words 
of memory, so its compactness depends on how many vectors are required. Its 
portability and simplicity are the same as the other EISPACK codes, which is 
to say the clarity and structure of the code could be improved. RSM (calling 
TRED1, IMTQLV, TINVIT and TRBAK3) should exhibit the same performance 
characteristics as RSPII except for not being as compact. 
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A common way to speed up codes to u se  the L I N P A C K  BLAS [10]. These 
routines are usually specially coded in an assembly language for improved vector 
performance.  A modification of RSPII,  referred to as RSPIIB, uses S / D D O T  
and S / D A X P Y  in TRED3 and TRBAK3 and S / D N R M 2  in place of  PYTHAG 
in~TINVIT. The effect on the time is shown in Table 2. The most dramatic change 
is in TINVIT,  where P Y T H A G  is a very inefficient way to compute the Euclidean 
norm of a vector. S / D N R M 2  is used instead of S / D D O T  because of the potential 
for overflow here. Otherwise, the BLAS are a mixed blessing. The additional 
calling overhead slows down scalar machines and even vector machines when 
short vectors are used. Vector machines with good compilers may produce 
machine code as good as that available in the BLAS, but without the overhead 
of a subroutine call. TRED3 processes many short vectors, even for large matrices, 
thereby raising the payback level substantially when the BLAS are called. 

There are a number  of  routines in common use that are similar to the EISPACK 
routines. One is D I A G D  from the Gaussian 82 [13] set of  programs. For com- 
parison purposes D I A G D  was modified to make it portable and to treat only 
real matrices. It will be called G D I A G D  here. These routines appear  to be an 
independent translation of  the Algol routines that are the basis for EISPACK. 
It is similar to RSP, but with a different technique for handling tolerances. 
Satisfactory results were obtained for all matrices on the FPS and NAS machines. 
The VAX produced some very poor  results for H I L S E G  (n - 10) and D I N D O N  
(n = 25). D I A G D  uses G floating arithmetic on the VAX while G D I A G D  uses 
the default D floating arithmetic, which has a smaller dynamic range. G D I A G D  
uses the older Algol-influenced addressing scheme in the equivalent of  TRED3, 
so it is slower than RSP in that section and as fast as RSP elsewhere. The 
tridiagonalization times scaled correctly for the ONES matrix on the NAS 
machine, unlike RSP. 

In the N R C C  program GAMESS [14] there is a routine called GIVEIS written 
by Cleve Moler and Dale Spangler. It uses modified EISPACK2 versions of  
TRED3, ,  IMTQLV, T I N V I T  and TRBAK3. The modifications consisted of  
improving the addressing scheme and calling the L I N P A C K  BLAS. GIVEIS 
requires an explicit machine epsilon value, which has been left at 2 -50 for all the 
machines used. It experienced the same overflow and other robustness problems 

Table2.  Ratio of execution times RSPIIB/RSPII  to diagonalize NESBET 

Dimension Machine TRED3 TINVIT TRBAK3 

n = 50 FPS-164 1.41 0.32 1.03 

VAX-11/780 2.24 0.49 1.11 

NAS 9160 0.95 0.41 0.53 

n = 500 FPS- 164 0.90 0.31 0.75 
VAX-11/780 1.24 0.58 1.08 

NAS 9160 0.30 0.45 0.20 
Cray X-MP 1.27 0.34 0.82 
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as RSP. If  TINVIT fails to converge, which happened (though not as often as it 
did for RSPII), TQL2 is called if all eigenvectors are being computed. The vers ion 
of  TINVIT used by GIVEIS suffers from another problem that was remedied in 
version 3, namely a grouping tolerance for degenerate vectors that was too right. 
This resulted in excessive effort going into orthogonalizing the vectors. This can 
be seen in the O(n 3) time spent in TINVIT for the NESBET matrix (Table 3). 
The major flaw is its unreliability. Completely wrong results were produced 
without warning for the D I N D O N  matrix around n = 50 on all machines and 
for NESBET (n = 500) on the NAS. 

Several routines whose development was unrelated to EISPACK were also 
evaluated. The GAMESS program had another routine named LIGENB,  which 
uses a packed input matrix, that is a modified version of the Gaussian 82 routine 
EIGEN,  which does not use a packed input matrix. The version used here was 
further modified to remove local storage and to use the BLAS S /DROT to perform 
the rotations. LIGENB accumulates vector rotations and is similar to RS in speed, 
but it is very unreliable. The FPS version doesn't  work at all and there were 
overflows and poor  results produced frequently on the other two machines. 

Long a favorite in many programs because it was faster than the standard 
EISPACK drivers is the QCPE routine GIVENS written by Franklin Prosser 
[15]. This routine uses a Sturm sequence method to find the eigenvalues and 
inverse iteration to find the vectors. As with other older code, machine dependent 
constants need to be set. This version (62.3) was modified to call the EISPACK3 
routine EPSLON to obtain a value of the machine epsilon. The value of THETA, 
specifying the dynamic range, was set to 1037 f o r  all machines. For most cases 
the routine produced satisfactory results, certainly better than routines calling 
TINVIT, but there were several cases of poor  results for BORDER and HRING2.  
There is no error return code to warn of these cases. It is certainly not a simple 
routine. 

Another recently popular  routine that has spawned many local versions is HQRII  
[16]. The original version was similar to RSM (the unpacked form of the matrix 
was used) except that a QR method was used instead of QL. The version used 
here has been adapted for packed matrices and was obtained from QCPE. QCPE 
supplies another routine, DIAHOU, which is yet another version of HQRII  that 
uses a Givens' bisection method when m/n < 1/4. There were minor, but not 
notable, differences in the performance of the two routines, so only HQRII  is 
discussed here. The eigenvalue convergence tolerance, which is user specified, 
was set to 16.EPSLON(1.0). The routine produced wrong results for ONES, 
BORDER, HRING2,  D I N D O N  and HILBERT and has no error reporting 
mechanism. Divide checks occurred for NULL. When it worked, the results were 
generally better than TINVIT. The QR and inverse iteration sections were slightly 
faster than RSPII equivalents, but the back transformation was noticeably slower, 
making the total slower than the EISPACK3 routines called by RSPII. The routine 
is not modular, indeed the back transformation and the inverse iteration sections 
are intermixed. 
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Table 3. Seconds to diagonalize NESBET for n = 500 
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Driver 3-Diag Values 3d-Vec Backtr Total p 

A. FPS-164 
RS 45.764 23.719 535.893 56.044 661.419 
RS/FPS a - -  - -  - -  - -  238.492 
RSP 54.378 23.717 535.934 84.893 699.018 
RSPII 54.378 18.130 17.625 84.893 175.027 
RSPIIB 49.183 18.130 5.524 63.836 136.675 
GDIAGD 207.143 12.681 535.853 84.944 840.724 
GIVEIS 53.251 7.950 67.135 64.115 192.452 
EVVRSP 54.112 2.409 7.491 63.954 127.966 
EVVRSPTM a 16.493 2.409 7.492 36.224 62.618 
GIVENS 221.086 109.438 15.304 85.418 431.545 
HQRII  54.488 6.171 10.863 1 3 4 . 5 4 1  206.064 
SHQRII 145.324 8.844 159.256 87.079 400.506 

B. VAX-11/780 
RS 987.39 453.31 5857.23 1025.76 8323.72 
RSP 1051.55 486.63 5896.26 1687.75 9125.04 
RSPII 1016.25 73.04 76.73 1713.74 2879.81 
RSPIIB 1261.58 72.87 44.33 1 8 5 1 . 9 1  3230.75 
GDIAGD 1199.87 462.98 5280.64 1554.52 8502.85 
GIVEIS 1013.67 51.13 1863.59 1 8 2 5 . 5 1  4753.92 
EVVRSP 1019.88 23.28 60.30 1 8 6 6 . 6 1  2970.13 
LIGENB 1341.73 461.95 5541.59 2528.20 9873.50 
GIVENS 1366.75 385.99 117.65 1 6 3 7 . 3 1  3509.68 
HQRII  1196.81 49.25 75.39 2640.34 3961.84 
SHQRII 1501.18 70.43 2073.42 2089.92 5734.98 

C. NAS 9160 
RS 26.316 14.076 127.654 32.809 200.857 
RSP 31.042 14.273 130.146 66.795 242.316 
RSPII 30.927 3.495 3.510 62.616 100.549 
RSPIIB 9.283 3.544 1.583 12.277 26.687 
GDIAGD 45.607 13.068 140.855 49.576 249.159 
GIVEIS 28.039 2.311 12.158 12.349 54.858 
EVVRSP 30.714 0.920 1.869 11.729 45.232 
LIGENB 40.955 13.207 50.592 77.252 182.007 
GIVENS 50.977 16.819 3.820 49.254 120.926 
HQRII  34.409 2.157 2.237 77.381 116.185 
SHQRII 39.157 3.728 38.762 45.567 127.214 

D. Cray X- 
MP/24 (1 proc.) 
RS 2.434 5.416 9.900 2.901 20.651 
RSP 2.375 5.416 9.905 4.767 22.469 
RSPII 2.374 2.060 1.988 4.734 11.156 
RSPIIB 3.016 2.060 0.672 3.875 9.622 
EVVRSP 2.354 0.332 0.868 3.830 7.384 

E. SCS-40/14 
RS 7.411 22.418 42.518 7.668 80.016 
RSP 7.250 22.422 42.522 13.177 85.397 
RSPII 7.250 5.395 5.707 13.177 31.530 
RSPIIB 9.388 5.393 2.338 12.503 29.623 
EVVRSP 7.167 1.034 3.159 12.497 23.857 

3.97E- 02 
3.86E - 02 
3.88E - 02 
3.68E+00 
3.68E + 00 
1.01E-01 
1.35E+01 
3.81E-02 
3.88E-02 
1 . 0 1 E  - 02 
1.98E- 02 
5.43 E + 03 

1.94E- 02 
2.17E-02 
5.54E + 00 
5.54E+00 
4.29E - 02 
7.82E + 00 
1 . 0 4 E  - 02 
4.64E - 01 
3.51E-02 
2.76E - 02 
7.08E+03 

1.89E-01 
1.93E-01 
7.48 E + 00 
7.48 E + 00 
1.01E-01 
3.90E+ 10 
8.27 E - 02 
2.30E + 00 
6.40E - 02 
8.51E-02 
1.58E+04 

5.53E-02 
5.55E- 02 
9.02E + 00 
9.09E + 00 
2.31E-02 

5.53E- 02 
5.55E-02 
9.02E + 00 
9.09E + 00 
2.31E-02 

a Uses APAL routines other than BLAS 
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The most recent proposed improvement  on H Q R I I  is called SHQRI I  [17]. This 
is a good example of  how not to improve a program. SHQRI I  still produces the 
wrong results for ONES, BORDER,  HR ING2 ,  D I N D O N  and HILBERT 
observed for other versions of HQRII .  Although the reporting of some trivial 
input errors is improved, there is still no warning the routine has failed. The 
divide check in N U L L  is avoided, but new ones occur on the VAX for BORDER 
and HRING2.  The NAS generated an overflow on BORDER.  Many additional 
cases of poor  and marginal performance showed up. It was slower (by nearly a 
factor of  two on the FPS) on all three machines. It uses a non-standard form of 
packed storage (by rows instead of columns) that complicated the addressing. 
The routine is much more complicated since it uses loop unrolling and jamming,  
which defeat many vectorizing compilers. It is not modular,  so the complexity 
is harder to see through. A complicated quicksort using static local storage, with 
no checks for stack overruns, was added with essentially no improvement  in total 
time (the change of an O(n 2) step to O(nlog2(n)) in an O(n 3) algorithm is nearly 
negligible). An inflexible C O M M O N  block is used to transfer parameters and 
data (what per cent of  the time is saved this way in an O(?l 3) routine?). 

EVVRSP is an attempt to produce a routine that gets high ratings for each of 
the seven desirable attributes; combining the reliability and accuracy of RS with 
the speed of RSPII,  or rather RSPIIB since the replacement of  PYTHAG with 
S / D N R M 2  in T INVIT  has already been shown to be advantageous. It should 
be clear by now that one wants to use EISPACK as a starting point because, 
even though not perfect, it has the most carefully thought out codes available so 
far. 

There are two key changes that improve TINVIT ' s  reliability and accuracy. The 
first is to scale up the value of EPS3. This increases the magnitude of the initial 
guess vector and reduces the number  of  situations where T I N V I T  fails to converge. 
Unfortunately it also reduces the accuracy of the vector, but that may be partially 
offset by the second change, which is to force one more iteration after convergence. 
This is actually nothing more than following Wilkinson's original suggestion [18]. 
It is a good idea even if the value of EPS3 is not increased. T INVIT  is the only 
inverse iteration routine examined that allowed an exit after only one iteration. 
The result of this can be disastrous and lead to the inclusion of H R I N G 2  as a 
test matrix. The extra iteration does not take that much of the total time. The 
problem of accuracy and convergence seems to call into equation the meaning 
of the current convergence test. The amount  to scale EPS3 is an empirical choice. 
Too small a value does not aid convergence and too large hurts accuracy. With 
a scale factor of  16, satisfactory converged results were obtained for all matrices 
except D I N D O N  a n d  HILSEG.  Of the nonconverged cases, only one result was 
poor  ( D I N D O N ,  n = 45, on VAX), two were marginal ( D I N D O N ,  n = 40; HIL-  
SEG, n =45,  on NAS) and the rest were satisfactory (TINVIT was further 
modified to allow processing to continue even when not converged). This suggests 
the possibility of proceeding, albeit with caution, even after T INVIT  warns of  
non-convergence. The fewest cases of non-convergence occurred with a scale 
factor of  64, but at the cost of  an increase in the number  of  marginal results. 
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Instead of using IMTQLV to find the eigenvectors, as RSM and RSPII  do, 
TQLRAT was modified to support  the sub-matrix blocking that is an advantageous 
feature of  TINVIT.  The inner loop of TQLRAT was modified to remove an IF 
statement, permitting the loop to vectorize. The inner loop of IMTQLV computes 
a square root that inhibits vectorization on most machines, but there is no square 
root in the inner loop of  TQLRAT. The modified TQLRAT is generally three or 
more times faster than IMTQLV. EISPACK warns that TQLRAT may not be 
accurate enough for TINVIT,  but so far that does not seem to be the case. There 
are faster and more reliable algorithms than TQLRAT available [7] and they will 
be implemented as time permits. 

TRED3 was modified so that the vectors p~ and qi are constructed in a separate 
subroutine as is the rank 2 update. Each of these new, easy to tune, routines 
carries out 1/3n 3 MAO's  after being called n times. The new routines are similar 
in function to two of the recently proposed level 2 BLAS [19] (S /DSPMV and 
S/DSPR2).  The modified routine, ETRED3, makes more reasonable choices 
about when a row and column are already in correct form to machine accuracy. 
It can therefore, skip matrices that are already tridiagonal and does not have the 
robustness problems seen in TRED2 and TRED3 when dealing with the ONES 
matrix (Table 1). 

5. FPS-X64 implementation 

The FPS-X64 series of  computers is perhaps unique in the way that it compiles 
FORTRAN code directly into microcode, with all the concurrency control of  the 
functional units that implies. Hardware pipelines are common now in everything 
from microprocessors to supercomputers,  but rarely is the user able to control 
these resources on a cycle by a cycle basis. Each 64-bit instruction can control 
a variety of  independent functions simultaneously and one instruction may be 
issued every cycle. The functional units include a three stage multiply pipeline, 
a two stage add pipeline, a three stage main memory  pipeline, a two stage table 
memory pipeline, an integer arithmetic unit and a branch control unit. 

The power of  the instruction set may be seen in the fact that the loop needed to 
carry out the dot product of  two vectors may be expressed as a single instruction. 
This is accomplished with a technique called software pipelining that rolls the 
elements of  the operation as they would be performed sequentially into a set of  
overlapped microinstructions. In the case of  the dot product, the operations that 
would take seven cycles if  done sequentially may be treated as a seven stage 
pipeline consisting of a single instruction, producing a floating point multiply 
and add (2 FLOPS) every cycle. This is the full theoretical speed of the machine 
and it can be sustained with these limitations: versions of  the machine with 
dynamic memory  will lose about 4% of their throughput when the machine stops 
to refresh the contents of  memory (static memory  does not need refreshing), the 
addressing must be such that successive vector elements are not in the same 
memory  bank (bank conflict), and the length of the vectors is limited by the 
amount of  table memory.  
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Table memory  is a smaller, faster memory that provides an additional data pat h 
to the arithmetic pipelines. These pipelines run at only half speed when all the 
data must come from main memory because only one word is fetched Or stored 
in a single cycle. With table memory,  one vector element of the dot product  may 
come from each memory to keep the multiply pipeline going full speed while 
the adder accumulates the result. A serious deficiency of the FPS-X64 FORTRAN 
compiler is that it never uses table memory,  so for most applications it can achieve 
only half of  the machine 's  capacity at best. There are library routines that use 
table memory and these may be adequate in many cases, but there are restrictions 
that limit their usefulness. One restriction is that, since the data can' t  normally 
be generated in table memory,  the values must be copied there at a cost of  at 
least two cycles per element. I f  the vector is only used once, the throughput has 
dropped below the level that would have been achieved without table memory.  
The cost of  loading the vector into table memory  may be amortized over several 
uses, as in a matrix-vector product, just as the startup cost of  the pipelines may 
be amortized over long vectors. 

I f  all code could be written in terms of dot products, it would not be so difficult 
to make full use of the machine. Unfortunately the vector outer product,  as 
performed by the BLAS SAXPY, is an operation that occurs frequently and this 
is more difficult for the X64 to handle. In the vector outer product,  each element 
of  a vector is multiplied by a vector and added to a second vector that may be 
stored as a third vector or back onto the second vector, an operation that needs 
to access three vectors simultaneously in order to operate at full speed. SAXPY 
thus requires two cycles using table memory and runs at half the maximum FLOP 
rate; three cycles are necessary without table memory.  The table memory  version 
of SAXPY, which can be expressed as a four stage, two cycle loop, is not normally 
supplied by FPS. The use of  specially coded versions of  SDOT and SAXPY is 
usually justified because the compiler generates an extra cycle for each of these 
operations, yielding three cycle loops for SDOT and four cycle loops for SAXPY. 

The two BLAS, SDOT and SAXPY, are sufficient to vectorize the key O(n 3) 
loops in TRED3 and TRBAK3. In TRED3 the formation of Pi = Aiui consists of  
a loop with both an SDOT and a SAXPY and the rank 2 update A i +  1 --  

A~- u~qf-q~uf can be expressed, somewhat less effectively, as two SAXPY's. In 
TRBAK3 a single SDOT followed by a SAXPY is all that is needed. The FPS-164 
running at 5.5 MHz is capable of 11 MFLOPS. Without table memory and ignoring 
overhead, the limit should be eight FLOPS in eleven cycles or four MFLOPS for 
TRED3 and four FLOPS in five cycles or 4.4 MFLOPS for TRBAK3. For n = 500, 
the F O R T R A N  versions of  TRED3 and TRBAK3 achieved 3.1 and 2.9 MFLOPS 
or 77 and 66% of tile limit. For TRED3 the compiler actually did better than 
would have been possible with FORTRAN BLAS, which would have yielded 2.9 
MFLOPS. The compiler was able to exploit redundant  memory references in the 
loops that disappear when the BLAS are used. Nevertheless, using the BLAS 
changed the performance to 3.4 and 3.9 MFLOPS and 85 and 89% of the no 
table memory  limit. I f  table memory versions of  SDOT and SAXPY were used, 
TRED3 would use only seven cycles for 6.3 MFLOPS and TRBAK3 three cycles 
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for 7.3 MFLOPS. The architecture thus places a significant constraint on the 
straightforward implementat ion of the algorithm. 

It is possible to overlap the memory fetches of  the first inner loop in TRED3 
because elements of  Ai appear  in both the inner and outer product  expressions. 
The outer product  port ion of  the loop then has only two memory references to 
contend with instead of  three. The result is four FLOPS in two cycles instead of 
three cycles and maximum efficiency is achieved. To accomplish this, Pt should 
be in table memory,  because both its input and output elements have to be in 
the same memory and the overhead to put At in table memory would be too 
large. This approach is unworkable because of  another unfortunate constraint; 
a store to table memory  and an add can't  be performed in the same cycle. That 
means three of  the four memory references must be to main memory,  which 
unbalances the situation again. Unrolling the inner loop to a depth of two would 
use four instructions involving two references to At but still only two references 
to Pt. All the addressing can' t  be handled in four instructions however. It was 
finally necessary to unroll to a depth of  8, producing a two stage, 16 cycle loop 
performing 32 FLOPS. It should be noted that 16 is the maximum number  of  
instructions the loop branch could handle given everything else that was going 
on. Even at this level of  complexity it was not possible to guarantee an absence 
of bank conflicts. I f  the first elements of Ai and Pt are in the same bank, the loop 
takes an extra cycle to complete. With a large At, arranging Pt to be stored after 
At should avoid this situation. Handling the special cases required by such 
extensive unrolling resulted in a routine with nearly 500 instructions (the source 
code has over 4000 lines of  text). This much code adds somewhat to the overhead 
because now the machine must stop occasionally to reload the instruction cache 
from memory.  

Coding the rank 2 update  in TRED3 directly saves a memory store, resulting in 
four FLOPS and four memory  accesses for two instructions. Again, to gain enough 
instructions to do the addressing, the loop was unrolled to a depth of two resulting 
in a three stage pipeline of  four cycles. To reduce indexing this time, the vectors 
Pt and qt were interleaved in table memory.  By calling these two APAL routines, 
TRED3 achieves 10.1 MFLOPS on the 164 for n = 500, or 92% of the limit. 

The back transformation, a relatively simple routine, was coded entirely in APAL 
to avoid the overhead of n 2 calls to the level 1 BLAS. It achieved 6.9 MFLOPS, 
or 94% of  the 7.3 MFLOPS possible with the straight use of  table memory versions 
of  SDOT and SAXPY. I f  two reflectors are accumulated at a time, the vector 
matrix update can be expressed as 

Z j +  1 = Z j  - h,utvf r 
- ht+l ut+l wt+l 

at a cost of  O(n 2) additional MAO's.  Here ht = 1~Hi, v f  = u f Z  and 
T T 

Wi+l = / . ) t + l -  h i ( U i + l U i )  I)T. 

This is now similar to the rank 2 update in TRED3 and could be implemented 
with either vt and w~+l or ut and Ut+l in table memory. The latter has the 
disadvantage of requiring a copy from main memory to table memory,  but the 
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advantage or sequential addressing in Z. The former could be created in table 
memory but would require careful coding to avoid bank conflicts in Z, which is 
addressed by row. Ir.L either case, performance near the machine's theoretical 
limit should be possible for TRBAK3 just as it is for TRED3. 

6. Conclusion 

Choosing the best routine to extract from 10-100% of the eigenvectors from a 

dense real symmetric matrix is not a simple matter. If  not all the vectors are 
needed, the choice is narrowed to a routine using the inverse iteration method. 
None of  the routines tested converged in all cases, so only routines that warn of 
a failure to converge should be considered. The EISPACK 3 inverse iteration 
routine TINVIT, although returning convergence information, was not as accurate 
as some other inverse iteration routines. EINVIT (a modification of  TINVIT and 
one of a set of  routines driven by EVVRSP) converges more often, with greater 
accuracy and in less time than the original. 

If  all the vectors are needed, the choice is more complicated. The speed and 
accuracy for each of the routines to find all the eigenvectors of a NESBET matrix 
of dimension 500 is given in Table 3 for each of the three machines used to 
measure portability. Similar results for the EISPACK 3 based routines is also 
given for a Cray X-MP/24 (using only one processor) and an SCS-40/14 which 
is compatible with the Cray machine. The extent of the compatibility is reflected 
in the complete agreement of the values ofp.  If  accuracy, reliability and compact- 
ness are more important than speed, then RS is the best choice. If  speed is the 
major consideration, then inverse iteration routines should be considered. 
Although EVVRSP was among the fastest routines on all the machines tested, it 
is relatively easy to tune the key O(n 3) parts of any well-written, modular routine 
to make it competitive on a given machine. Unfortunately, the architectural 
features of  the fast machines currently available make them sensitive to different 
tuning techniques. What works well for the FPS may be detrimental for other 
machines. On vector machines, it is likely that the nominally O(n 2) sections will 
impact, or even dominate, performance if they are not vectorized, except  for very 
large values of  n. This is particularly true of  inverse iteration methods, where 
partial pivoting in the Gaussian elimination is not readily vectorizable. Some 
consideration of these points was made in EVVRSP, where the QL section and 
the orthogonalization process in the inverse iteration section now vectorize; but 
more work needs to be done. 

High memory bandwidth (with interleave levels adequate to avoid bank conflicts) 
would make the coding of  these algorithms much easier and more general while 
maintaining high levels of  theoretical capacity. What is really needed is multiple 
(at least three) data paths and compilers that know how to use them. In the 
meantime, tuning general routines like EISPACK to specific architectures can 
achieve significant increases in throughput. The FORTRAN version of E W R S P  
is available upon request through BITNET. The requests should be sent to 
ELBERT@ALISUVAX. 
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